The Software Engineering Discipline 59

ChapterV

The Software
Engineering Discipline

He who hurries cannot walk with dignity.

(Ancient Chinese saying)

Software engineering is vital for the proper planning of IT projects, although itis not a
formal part of project management. The software engineering embedded in the acquired
products will significantly affect long-term project success factors, even for IT projects
that primarily involve software acquisition and integration instead of software develop-
ment,. In this chapter | review software engineering and its relation to IT project
management.

Software Engineering vs.
Project Management

The project management and software engineering disciplines overlap considerably, as
is illustrated in Figure 5.1. The Institute of Electrical and Electronics Engineers (IEEE)
software standard 1490-2003 provides for the adoption of PMI Standard (PMBOK).

The IT industry has no one methodology, architecture, or set of standards; however, in
other industries, there are typically established codes, frameworks, patterns, methods,
and tools that are almost always used. For example, the home building industry has
county building codes, framewaorks for house patterns (ranch, colonial, Tudor, contem-

porary, etc.), subdivision guidelines and limitations, standard methods, and tools of the
trades involved. The IT industry has a number of rapidly changing and evolving

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

60 Brandon

Figure 5.1. Software engineering vs. project management

Software
Engineering

Requirements
Methodology
Architecture
Deployment
Reuse

Scope
Change Management
Quality
Risk

Schedule
Cost
Procurement
Communications & HR

Project
Management

standards, frameworks, architectures, tools, and methodologies from which to choose.
Therefore, before the project is planned in terms of breaking down and assigning to
resources the scope/requirements, these other issues need to be addressed. Many of the
problems in project management can be traced back to problems in methodology,
architecture, reuse (lack of), and standards.

The termyofiware engineering was coined by Bauer (1972) who was a principal organizer
ofthe 1968 NATO conference on that subject. His definitionffvare engineering was

“the establishment and use of sound engineering principles in order to economically
obtain software thatis reliable and works on real machines.” The IEEE definition is “the
application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software (IEEE Std 610-1990). The modern Webopaedia
definition follows:

Software engineering is the computer science discipline concerned with developing
large computer applications. Software engineering covers not only the technical
aspects of building software systems, but also management issues, such as directing
programming teams, scheduling, and budgeting.

Software Development
Life Cycle Methodology

According to Webster’'s dictionarymethodology is “a system of methods.” My
definition formethodology is “organized know-how.” The most common and established

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 61

methodology used in building and/or integrating IT systems has been informally called
the waterfall method and formally called the software development life cycle methodol-
ogy (SDLC). This notion and term was first applied to IT systems by Royce (1970). The
steps (illustrated in Figure 5.2) in this classical methodology are:

. Definition

. Specification (requirements)

. Design

. Construction (programming and unit testing)
. Testing (system and integration)

. Installation

. Operation and Maintenance

In theory these steps are not supposed to overlap or iterate. Some of the newer software
methodologies are variations of or alternatives to the basic waterfall approach.

One hears many comments about the classical waterfall software developmentlife cycle:

. The software development life cycle is the cornerstone of development!
. The life cycle is out of date!

Figure 5.2. SDLC waterfall

Definition

Specification

Design

Construction

Testing —l

Maintenance

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

62 Brandon

. Get good people and the life cycle will manage itself!
. There must be better and faster ways to build IT systems!

SDLC goals are to

. Do it right the first time!

. Meet customers’ stated requirements!

. Have atimely completion!

. Complete within cost constraints!

. Build system with the necessary quality!

Thedefinition step involves making a clear statement of goals, identifying why and how

the proposed system will be better—cheaper—faster than the system it is replacing, and
usually a overall/rough cost-benefit analysis. This phase is typified by frequent cus-
tomer interaction, elimination of arbitrary constraints, negotiation and compromise on
scope (features) versus time and cost, statement of assumptions, rough time and cost
estimates, a rough project plan, and a signed go-ahead (i.e., the project charter).

Thespecification step involves a complete statement of scope (requirements), use case
scenarios, preparation of preliminary user manual (external design specifications),
detailed project plan (including work breakdown structure [WBS]), specification of
needed resources, refined estimate of time and cost, refined cost-benefit analysis, and
signed approval of requirements and user manual by stakeholders. However in practice
the user’'s manual is rarely written at this stage. The reason the user’s manual (or at least
a draft) should be done at this step is so that some other dependent activities can begin,
such as test planning and test scripts, making training plans and materials, and other
dependent tasks, like internal or external marketing.

Thedesign step involves resolution of critical technical issues, selection of architecture
and platform(s), adoption of standards, assignment of staff, completion of external
design (user interface design), design of critical data structure and database, internal
design of algorithms and processes, Requirements Traceability Matrix, preliminary test
script, final time and cost estimate, and a final cost-benefit analysis. Often the design step
is divided into two steps; analysis (or overall design) and design (or detailed design).

Theconstruction step involves the implementation of the design (i.e., via coding), unit
testing, systems integration, draft internal documentation, and the completion of test
scripts.

Thetesting step involves full scale integration and system testing, completion of user
documentation, completion of training material, adoption of formal change control
procedures, completion of the internal documentation, completion of installation manual
and roll-out or phase-in plan. Testing is further discussed in Chapter X.

The installation step involves product roll-out, end-user training, producing lessons
learned documentation, and defining procedures for handling operations, user support,
and configuration management.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 63

Themaintenance step involves following and revising procedures for problem resolu-
tion and problem escalation, operations, backup and security, configuration control, and
guality/performance monitoring.

Atthe end of each step there is usually a formal meeting in which a documentis produced
for the culmination of effort in that step. This document is reviewed by project
management, the performing organization line management, and the benefiting organi-
zation (customer). If any of these stakeholders are not satisfied with the results of that
step, the project can be terminated or the step repeated; the project will not proceed
unless the stakeholders have given approval to move forward at each step. In theory this
should resultin a product that satisfies the initial requirements and the stakeholders. The
following is what can, and often does, go wrong:

. User requirements are misunderstood, incomplete, not fully documented, or not
fully implemented

. Requirements have changed

. Documentation is “unusable”

. System is difficult to use

. Training is ineffective

. Capacity or performance problems are present
. Audit and integrity problems are present

. “Bugs” and other quality issues are present
. Standards are not followed

. Estimation of workload is poor

. Project is managed poorly

. Budget is exceeded

. Not completed on time

These issues and others are discussed in detail in later chapters, along with the
examination of root causes and remedies. Many in the field feel that the classical waterfall
approach is too slow in today’s fast-paced and rapidly changing world. Remember that
only asmall number of all IT projects result in fully working systems. Other projects are
sent back for reconstruction, abandoned after delivery, or never completed. Therefore,
how, in general, does one keep things from going wrong, even when a sound method-
ology is employed? These questions have to be answered:

. Are you committed to the methodology, or is it just words in a book gathering dust
on the shelf?

. Do you have the ability to follow the methodology organizationally and with
respect to resources?

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

64 Brandon

. Does the methodology specify the things that need to be done?

. Do you measure via metrics or benchmarks things that have been done and done
properly?

Under the Software Engineering Institute’s (SEI) capability maturity model (CMM),
which is detailed later in this chapter, these questions correspond to the “common
features” of the maturity models:

. Commitmentto Perform

. Ability to Perform

. Activities Performed

. Measurements and Analysis
. Verifying Implementation

Later chapters provide practical answers for the last three questions as they relate to
specific project management and/or software engineering methods and tools. Figure 5.3
shows the IEEE/EIA Life Cycle Process definition as well as the definitions for support
and organizational processes. (These processes are also covered in later chapters.)

Figure 5.3. IEEE/EIA life cycle process

Life Cycle

Organization Supporting Primary

Documentation

Configuration

Management .

Management Acquisition
Quality Assurance

Infrastructure Supply

Verification

Development

Improvement

Validation .

ini Operation
Training

Joint Review .
Maintenance

Audit

Problem Resolution

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 65

Management Stage Gates

The notion of stage gates can be traced back to phased project planning used decades
ago by NASA for handling very large aerospace projects. These gates are attractive to
management because they restrict investment in later stages until the anticipated return
on investment is clarified and made more certain by earlier phases. Under this method-
ology, stages and gates divide the total effort into a series of consecutive stages,
whereby gating criteria must be met before the project can move from one stage to the
next. Thisisillustratedin Figure 5.4. The gating criteriainvolve the review of the defined
outputs from the previous stage as well as metrics to justify that the project scope can
still be completed within the time and budget constraints.

For IT projects, a traditional stage gate technique can be superimposed upon the chosen
methodology. For example, combining the classical waterfall methodology with stage
gates may result in the stage deliverables/outputs as shown in Figure 5.5.

At each stage gate, management would traditionally review the following:
. Defined output (stage deliverables)

. Completion status of activities
. Actual costs to date

Figure 5.4. Stage gates

Stage 1 Stage 2 Stage N

Figure 5.5. Stage gate outputs

Stage Outputs
Definition Project Plan
An;lysis Ovellal Design Documents:

Use Cases
Ext. Spec. (Prelim. Users Manual)
Test Plan
Dezign Detail Design Documents:
MenwHNavigation Design
Secreen Designs
Report Designs
Database Design
Algorithms Design

C i : Objects:
Code (incl. internal documantation)
Test Scripts
Help Screens
Testing Test Results Documents
User Manual
Training Material
Installation Install Documents

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

66 Brandon

. Estimated cost at completion
. Estimated time to complete
. Updated risk analysis (i.e., the need for more or less reserves)

The stage gate technique can be used with any of the variations or alternatives to the
classical waterfall discussed later in this chapter. For example, the stage gates can be set
for each iteration if an iterative methodology is used. Another way to implement this
approach is to set the gates at specific time periods, such as each month or each quarter.

This traditional stage gate process can slow down a project, however, due to the amount
of review time at each gate. The events that comprise review time involves producing
reports, sending reports to management, having management privately review reports,
and then scheduling a public review meeting. Project cost is also higher due to the high
cost of the people involved with a stage gate review. To overcome these disadvantages,
a number of alternatives to the basic stage gate process have been proposed. These
variations are called a number of names, such as fuzzy gates or exception gates, but the
common goal is to have a process that is not slowed down by the gates, unless there is
a significant problem.

As was discussed in earlier chapters, | suggest using a dual gating approach with a
management stage gate at specific time periods (i.e., monthly or quarterly) wherein the
earned value critical ratio is the dominant metric used for the go/no-go decision. This
management gating technique is combined by a quality gating process, and there may
be multiple quality gates within each management gate (or vice versa). The management
gate focuses on the completion criteria and the quality gates address the satisfaction
criteria. The quality gates review specific preliminary product manifestations in regard
to the satisfaction factors of operation, utility, maintainability. A revised cost benefit
analysis (based on latest earned value estimate at completion and revised benefit
numbers) can also be includ€is combined gating process effectively and efficiently
addresses all the project success factors discussed previously in this book. Later
chapters elaborate on earned value, quality management, metrics for all the success
factors, and this type of gating process. Figure 5.6 illustrates this combined gating
process and its relation to the project success criteria.

SDLC Variations and Alternatives

Because of the extensive and formal stakeholder review at the end of each step and the
lack of overlap, the classical waterfall methodology can be slow in getting a software
product to market. Also, the waterfall method becomes unstable if the initial requirements
are significantly in error or change much. New technologies and global competition are
quickly changing the business landscape, creating another problem. From the time a
business problem is analyzed and a solution built, the “shape” of the original problem
has changed significantly; thus, the developed solution no longer matches the original
problem. Thisisillustrated in Figure 5.7. Project success rates show that large IT projects

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline

Figure 5.6. Dual stage gates

Satisfaction Completion
e oere Gverall IT
IR - Sl I T N s
Operation Time
! Quality Cost
‘ ‘ Earned Value
, Analysis
\ v o
Managment St Managemant
‘ anagme age Stage Gate
‘ ~

Business
Benefit
Metric(s)

Quality
Stage Gate

Quality
Stage Gate

Quality

[— Pl Quality Stage Gate

Stage

Manifestations

Figure 5.7. Changing shape of IT problems

Problem Domain

Business Business Business Business
Problem Problem Problem Problem
. Start of End of
Project Project
v \
Requirements Design Development Solution

SolutionDomain

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

TEAM LinG

67

68 Brandon

are getting harder to complete successfully (Standish Group, 2004). Projects over $10
million have success rates of only 2%, projects between $3 and $10 million have success
rates from 23% to 11%, and projects under $3 million have success rates from 33% to 46%.

Because of these low success rates, a number of variations and alternatives have been
suggested and tried, with varying degrees of success. Many of these approaches take
large IT projects and break them down into smaller, more manageable pieces. However,
there is no single silver bullet approach (Jones, 1994). Some of the software development
life cycle methodology (SDLC) alternatives, to list a few, include Yourdon Structured
Design, Ward/Mellor, Stradis, Spectrum, SDM/70, LBMS, Information Engineering, IBM
AD/Cycle, Gane & Sarson Structured Analysis, DeMarco Structured Analysis, Ander-
son Method/1, Bachman, Agile and XP, and Clean Room. In this chapter, we will first
discuss SDLC variations generically, and then discuss modern specific implementations.

The Overlap or Free-Flow Methadlows any task to proceed as long as its dependent
tasks are completed. Here the basic waterfall steps may have considerable overlap (this
is illustrated in Figure 5.8). For example, even though the total-system design is not
completed (or documented and approved), the implementation of those components
whose design is completed may begin. This overlap is built into the dependency
relationships in the work breakdown structure (WBS), which is discussed later in this
book. One is betting that the total design (such as may be manifested in UML design
drawings) will be approved. The concept is similar to optimistic record locking in an
interactive database application. This technique works very well with the use of the dual
stage gate approach of this book. This is also a good technique on contracts where
incentives are available for early completion. Obviously risks are greater with larger
projects and for projects where requirements can change significantly.

Evolutionary Developmertiegins with only the user requirements that are very well
understood and builds a first version. Often that first version is just a prototype.
Analysis, design, implementation, and testing are done in a free flow overlapping manner
without any formal review of documents. This first version is then taken back to the
customer for review and definition of further requirements. Next the second version is
built, and then taken back to the customer. This process continues until the customer is
satisfied with a version and no further extensions are required. (This is illustrated in
Figure 5.9.) Documentation, training, acceptance testing and other project completion
activities are done at that point at which all (or most) of the customer’s requirements have

Figure 5.8. Overlap method

Ef{ort

Implementation

Design Testing
Analysis

Time-->

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 69

Figure 5.9. Evolutionary development
Version1

Req's h

Subset | code &
Test

Version2

Subset [co4e &
Test

VersionN

Req's h
Subset [coge &
Test

finally been included. This methodology is much faster than a waterfall approach and also
somewhat quicker than the free-flow method. However, management visibility may be
limited because little intermediate documentation is produced. Also, in a contracted
environment (external or internal), a fixed price contract could not be used since the
overall scope is notinitially determined and priced. For a contracting environment, either
a cost plus or time and material contract would have to be used. Contracting and
procurement are discussed in a later chapter of this book. Also, internal design is often
poor for evolutionary development because the entire scope is not visible from the
beginning, and continually changing a system leads to a design that is less adaptable
and harder to maintain. If the system is designed and built in a fully object-oriented
manner, this problem may be minimized; object-oriented design is discussed later in this
chapter.

~a

Incremental Development begins with a determination of all the requirements, but only

in a rough outline form. Next, those requirements are prioritized normally based upon
those features that are mostimportant from a business perspective. Because time is spent
up frontlooking at all requirements a more appropriate overall platform, architecture, and
design can be selected. This is particularly important for security requirements, because
security cannot be an afterthought. Good security has to be built into the total product
(and the methodology of constructing it), not bolted on afterwards.

After the initial requirements phase, development proceeds as in the evolutionary
method. (Thisisillustrated in Figure 5.10.) Each increment typically represents a product
portion that can be placed into service. Incremental development is not as quick as
evolutionary development, but attempts to avoid the design problems caused by not
knowing all the major requirements initially. However it suffers from the same contract

typeissues as the evolutionary method. Another potential problem is that the increments
are based on the priorities of the requirements, and sometimes priorities may significantly

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

70 Brandon

Figure 5.10. Incremental development

Requirements &
Overall Design Version1

Req's Subset

Design Code & Version2
Test

Req's Subset

Design Code & VersionN
Test

Req's Subset

Design Code &
Test

change during the time of developing the increments. Both the Rational Unified Process
and Extreme Programming as well as several other new methodologies use this technique
and these are discussed later in this chapter.

Bounding Box Development is similar to incremental development, except that each
increment is not based on a certain scope (requirements subset) but is instead based on
a measure of effort. If the effort putinto anincrementis constrained by calendar time then
the termeimebox is commonly used. (This is illustrated in Figure 5.11.) For contracted
development (external orinternal), the increments are usually based on a dollar (budget)
amount. Thus this method does not have the contracting disadvantage that evolutionary
or iterative methods have, but customers must be willing to contract for portions of the
total system. However, because the amount of scope that will actually be completed in
each increment is not known, each increment may not represent a product portion that
can be placed into service.

Figure 5.11. Bounding box development

Requirements &
Overall Design Version1

Design Code & Version2
Test

Effort Contraint

Design Code & VersionN
Test

Design Code &
Test

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 71

There is no one best methodology. An organization must select the methodology that

is most appropriate for the type and size of the IT project at hand, the nature of the
customer and stakeholders, the contracting environment, and the resources involved,

both people and financial. Combinations of these methodologies can also be used such
as in the Rational Unified Process which combines incremental and free-flow techniques.
Figure 5.12 shows the primary advantage and disadvantage of each of the methodologies.

Development Acceleration

In addition to modifications of the basic SDLC, a number of other philosophies, methods,
and tools have been proposed and tried, to compress all or certain steps in the SDLC.

Rapid Application Development (RAD) is a generic term for software development
methods and tools that speed up the development process. It was commonly applied to
products that automatically generated code to create user interface screens both of the
character type and graphical type (GUI) starting in the 1990s. Products such as Clarion,
FoxPro, Visual Basic, and PowerBuilder are examples of this era. Often these products
also featured automatic report generation capabilities, and some products were devoted
to this aspect such as Crystal Reports. So-called fourth-generation languages, such as
Natural, were also part of this RAD landscape. Many RAD products were combined with
databases such as Microsoft Access, and other RAD products could interface to stand-
alone database products. Earlier RAD products built stand-alone PC applications or
multiuser PC applications via LAN (local area network) file redirection (mapped drives).
Later RAD products used SQL (structured querylanguage) to create true client-server
applications; however, almost all of these still required client machine configuration such
as mapping drives, client installation of drivers, or other middleware. These RAD
products did speed up considerably the implementation step for smaller applications, but
they did not accelerate other development steps: requirements, analysis, design, and
testing. For larger or more complex systems, automatic code generation is not powerful
or flexible enough to meet application needs and programmers usually have to resort to
traditional hand coding. Today, modern IDEs (integrated development environments),
such as Dreamweaver, NetBeans, Eclipse, and Visual Studio, contain features including
WYSIWYG (what you see is what you get), drop and drag screen generators, and

Figure 5.12. Methodology comparison

Method Advantage Disadvantage Best For

Waterfall Sound Development, High ~ Slowest Method Fixed Price Contract
Quality

Free-Flow Faster Development Risky for Unstable Incentive Contracts

Requirements

Evolutionary Quick Development for Design Problems Smaller Systems
Small Applications

Incremental Quick Production of Contract Issues Rapid Phased Deployment
Partial Products

Bounding Box Quicker Development Partial Products Budget Bound Organization
within Budget Uncertain

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

72 Brandon

including, possibly producing, thin client Web applications, which do not require any
client—-machine configuration changésis often said that RAD products speed up the

easy part of the development;, however, RAD products are very useful in creating
prototypes and are particularly useful in incremental types of development methods.

RAD tools are constantly evolving with the fast-changing IT landscape, and RAD tool
vendors are constantly being acquired by other IT vendors. Therefore, if one develops
a product today, using a particular RAD tool, that tool may be obsolete or be in the hands
of a different vendor tomorrow (with little or no remaining support).

CASE (computer aided software automation) refers to computer software systems that
generally support several steps in the development process, usually including require-
ments, analysis, design, and possibly other steps such as coding, testing, documenta-
tion, and version control. Most CASE products are primarily geared towards the
development of business software systems and central themes are a data dictionary and
various design drawing and associated repositories. There are different types of CASE
products, and these products can be classified in a number of ways. Some products
support one particular methodology and others can support several methodologies;
some support one particular computer language and some may support several lan-
guages. Some CASE products are called horizontal tools or workbenches or environ-
ments, and they provide integrated tools for the support of multiple development steps.
A modern CASE environment consists of a number of tools operating on a common
hardware and software platform; these tools may be from one or multiple vendors. This
CASE environment also supports a number of different types of users: project managers,
designers, programmers, database administrators, testers, technical writers, and so forth.
The CASE environment is distinguished from a random tool set in that the environment
facilitates the integration of those tools so that they can work together coherently
without duplicating effort or information.

Today there are hundreds of CASE tools available, and perhaps many in each of the
aforementioned categories. Commercial products include such names as Amadeus,
Continuous, InConcert, Life*Flow, MATE, Process Continuum, Process Engineer,
ProcessWeaver, ProcessWise, ProSLCSE Vision, and SynerVision. Although these
products have provided significant development accelerations (up to 50% in some
cases)pne must be careful not to let CASE replace a sound methodology, or all you

will accomplish is to build the wrong system even faster.

Prototyping involves creating a scaled-down model of the product to be built. The
scaled-down model is usually live, in that it is implemented in software and has some
degree of functionality; however, it may be only on paper (paper prototype). A prototype
is not fully tested, does not implement all features/requirements, and typically does not
address tasks/issues as database interaction, concurrency, transaction boundaries,
scalability, security, recoverability, maintainability, reusability, and so forth. Speed and
capacity are not issues here unless the prototype is specifically built to test those
characteristics. Prototypes should be easily modifiable to explore different layouts,
navigations, and behaviors; thus, today’s prototypes are usually built with RAD/IDE
type products. They can often serve as an external design for portions of the final system.
The purposes of prototypes are to demonstrate feasibility, evaluate alternatives, clarify
and flush out user requirements, and evaluate “user friendliness” and other qualitative
aspects.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 73

However, there are dangers in using prototypes. Often, a prototype can assume a life of
its own. Sometimes when managers or customers see the prototype, they think that the
product is close to being ready; they are not aware that the prototype is grossly scaled
down and that some of the most difficult and time-consuming parts of the product are
notin the prototypeDespite these dangers, this author thinks that prototyping is a vital

part of modern application development independent of whatever overall methodology

is utilized.

Paper prototypes, eroryboards, have many of the same advantages of live prototypes,

but they do not have the aforementioned disadvantages of live prototypes, and they can
be produced and modified quicker and cheaper. Paper prototypes can be constructed
with paper and pencil, simple drawing programs, presentation software, or RAD prod-
ucts. The television and motion picture industry have used story boards for decades, but
usein IT was minimal until the advent of Web applications. Storyboards essentially walk
the user through the interaction between the end users and the system, and visually show
that interaction through screen mock-ups of both input and output screens. After basic
requirements are gathered and perhaps represented with use cases, storyboarding is the
next logical step in clarifying or detailing those requirements and flushing out added
requirements. Eachinteraction in a use case diagram could be simulated via a storyboard.

For example in the case of building modern Web-based applications, storyboards and
simple user interface prototypes can be easily constructed with RAD products, like
Dreamweaver. Evenifthe final Web productis going to use a Web server API (application
programming interface), the tags and scripts (JSP, PHP, Cold Fusion, or ASP) can be
added directly to the prototype HTML/XML/JavaScript code.

Joint application design (JAD) was formulated by IBM personnel in the late 1970s. In
1980, IBM Canada held several workshops to demonstrate the concept, and later in the
1980s, JAD was utilized in a number of companies. IBM defined JAD as an “interactive
systems design concept involving discussion groups in a workshop setting.” The
purpose of JAD was to bring together developers and users in a structured environment
for the purpose of obtaining quality user requirements. They believed this structured
approach provided a better alternative to traditional serial interviews by analysts of the
performing organization. The prime advantage of JAD is a reduction in the time it takes
to complete a project. Itimproves the quality of the final product by focusing on the initial
portion of the SDLC thus reducing the likelihood of errors that are expensive to find and
correct later on.

JAD takes place in a structured workshop session. Representatives from the performing
and benefiting organization meet in a room and discuss preset issues. Everyone gets a
chance to speak, and questions are answered immediately—there is no telephone tag or
waiting for memos or e-mails to recycle. JAD also seeks to eliminate the problems with
traditional meetings by turning them into organized workshops, with facilitators, visual
aids, agendas, deliverables, and feedback.

As JAD was used more in the 1990s, the term was broadened to include more collaborative
efforts between the benefiting and performing organizations, including conflict manage-

ment, brainstorming sessions, and motivational meetings. Sometimes the sessions were
more like technical workshops, where participants focused on needs analysis and applied
software tools in the process of gathering business requirements. Sometimes these

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

74 Brandon

sessions used RAD and CASE tools, and JAD usage expanded to functions other than
the requirement gathering step in the software development life cycle.

Today, JAD is used in many steps of SDLC and is often defined as a system development
methodology. In 20 century, JAD brought users and developers together in the same
physical location, but today JAD is often held via virtual meetings. JAD meetings must
be structured, and some guidelines include the following (Dennis, 1999):

. Have management support

. Use experienced facilitators

. Get the right people to participate and set their roles
. Set clear session objectives and deliverables

. Have a detailed agenda and stick with it

. Produce deliverables shortly after the session

| feel that clear and complete communication between the performing and benefiting
organization is vital to the success of IT projects. JAD offers a valuable technique for
effective communication particularly in requirements gathering. One must be careful to
follow the above guidelines or these sessions may just waste more of everyone’s time
in meetings. There are also certain types of customers where access to customer
personnelisvery limitedAD sessions combined with review of prototypes are excellent

way to solidify requirements early in a project.

Modern SDL.C Implementations

The Rational unified process (RUBbased upon both the incremental methodology and
the free-flow methodology discussed earlier. Instead of attempting to address all of a
project’s requirements, RUP produces software iteratively that addresses a compromised
but known feature set and evolves the project over time (Jacobson, 1999; Kruchten,
1998). The difference between evolutionary methods and RUP, though, is that one
identifies the requirements for the entire system, but only details the top 20% or so of
architecturally significant cases during a single increment. This enables the determina-
tion of an appropriate architecture and design which willaccommodate the remaining 80%
of the requirements without compromising the integrity and quality of the total system.
This is particularly important for security requirements, and a plug-in to the standard
RUP, called CLASP (Comprehensive Lightweight Application Security Process), is
available which, provides a structured way to address security issues in the software
development process.

RUP specifies different roles for project participants. Before an architect ever gets
involved, an analyst is building use cases and evaluating and prioritizing them with the
customer. Before the coders begin implementation, architects work with analysts to

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 75

identify the architecture which best satisfies requirements and constraints. UML tools
are used to build a consistent model from requirements to detail design. RUP uses the
free-flow methodology also in that there is considerable overlap in activities of different
roles.

RUP is a phased approach that defines four distinct phases:

. Inception: Understanding the need, understanding the proposed system to ad-
dress the need, making the business case for the proposed solution

. Elaboration: Selecting the architecture and developing the project plan
. Construction: Design, coding, integrating, and testing

. Transition. Installing the product on the target platform(s) and getting the user
take ownership of the system

The key to RUP is iteration, both within each of the aforementioned phases and within
the incremental production of version. Each iteration within a phase ends in a deliverable,
and each increment results in a working product version. RUP defines static workflows,
core workflows (business models, requirements, analysis/design, testing, deployment)
and support workflows (change management, project management, environment and
tools). However each of these static workflows is not associated with any one phase, and
some degree of each type of workflow goes on within each phase.

The transition from phase to phase is not separated by a stage gate, and management
control is not done by placing dates upon the phase boundaries. Management control
is only done upon iterations. The project plan contains a list of proposed iterations
(which is likely to change), and each iteration has an estimate (which is also likely to
change). The proposed iterations are not assigned due dates, but decision points are set
up in time (usually based upon weeks). At each decision point, a decision is made in
regard to adding/removing resources, adding/removing iterations form the next release
(version) of the product, or killing/holding the project. These decisions are based upon
progress, cost, and/or earned value metrics. Thus a key part of the project plan is how
risks will be managed; itis a plan of contingencies, as opposed to just a plan of activities.
RUP is not suitable for all IT projects. It is complex and difficult to quantify in a
contracting arrangement. However for internal projects that are large and risky, and

where quick deployment of partial products is necessary, it may be an appropriate

choice.

Agile programming (AP) is a name given to a growing number of lightweight methodolo-
gies with names like Crystal (Cockburn, 2001), Scrum (Schwaber, 2001), Adaptive
(Highsmith, 2000), Feature-Driven Development (Palmer, 2002), Dynamic Systems Devel-
opment Method (DSDM; Stapleton, 1997), and Extreme Programming (Beck, 1999).
During the 1990s, there was such a need to quickly build new IT systems to take
advantage of new technologies like Web applications and e-commerce, as well as the
need to address the Y2K problem, that IT organizations began exploring these light-
weight techniques. Lightweight methodologies do away with much of the SDLC process
overhead that slow down developers, such as detailed formal requirements definitions
and extensive documentation. Some feel that these new development approaches are

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

76 Brandon

based on the premise thatif you hire competent programmers who always know what they
are doing, then any problems they encounter are organizational and communications
ones; and those are what the agile approach focuses on.

Although the various agile methods differ, they have some things in common. Most use
anincremental free-flow approach, as does RUP. The common intentis to be agile, soone
should embrace change and produce software that is adaptable; thus, most of these
methods call for the use of object-oriented languages. Another common feature is a lot
of contact time with users. Still another key focus is a focus on people, not processes,
thus emphasizing team morale building. Most AP methods have some core principles,
including the following:

. Use a simple design (the old military KISS principle)
. Design as you go, and keep refactoring the code

. Take small, incremental steps (when changing or adding code, take the smallest
step possible, then test again)

. Stick to one task at a time (do not add code to accomplish two things at the same
time)

. Use IDE and RAD tools

. Use only the techniques that really work for you

These methods may seem basic and obvious to many developers, but | know many
programmers who never followed any of these principles. Some programmers, instead of
modifying a module or class for a small change or addition, will spend a great deal of time
writing the entire module from scratch. The advantages of these AP principles include
the following:

. Faster reaction to changes in requirements
. Overall simplicity of the design
. Earlier coding is possible

. By refactoring the code, the most important parts get the most attention (no time
invested in changing what does not need to be changed)

. Code in progress is always stable

Refactoring, one of the core development concepts, is a new word for cleaning up the
code. More formally, refactoring improves the design and maintainability of code in small
incremental steps confined to areas of current interest. One problem with refactoring,
however, is that, when a programmer comes under pressure to finish quickly, he or she
may not complete the refactoring work.

AP is relatively new, so the success and applicability of these methods is unclear. It is
felt that AP is suitable for small projects and small teams; whether it has practical
application for larger environments is still in question.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 77

Extreme programming (XP) is a software development approach initially created for small
teams on risk-prone projects with unstable requirements (Beck, 1999). Kent Beck, a
programmer and project leader, developed XP while working on a long-term project to
rewrite Chrysler’'s payroll application. XP is a form of AP based on a lightweight
methodology. XP however, differs from most other agile approaches by being much more
prescriptive. Like AP, XP is an incremental method with free-flow. XP advocates say the
methodology (creating user scenarios and performing upfront feature testing) allows
them to develop and deliver code more quickly with fewer bugs. XP is built around rapid
iterations, an emphasis on code writing, and working closely with end users. The 12 basic
practices of XP are:

Customers define requirements via use case scenarios (“stories”)
Early on, teams release small increments into production

Teams use standard names and descriptions

Simple object-oriented coding is used

Designers write automated unit test scripts before coding
Refactoring is used extensively

Programmers work in pairs

Programmers have collective ownership of all code

Teams integrate and check code back into repositories frequently (no longer than
1 day)

10. Developers work only 40-hour weeks
11. User representative(s) remain on site
12. Programmers follow strict coding standards

© 0o N o s wWwDNPRE

Although XP in different forms has been used for a few years, many IT organizations have
beenreluctantto try it. A majorissue is that some XP principles contradict longstanding
IT policies. For example, XP specifies pair programming, in which two programmers sit
side by side, working at a single workstation. Pair programming seems inefficient, but
studies have shown that it is no less efficient that traditional programming and usually
results in fewer code defects (Williams, 2000). Fewer defects eventually means quicker
delivery. However, not all programmers want or are suited for pair programming. Very
good programmers should not be encumbered with a sidekick. Many programmers like
solitude—that is one of the reasons they choose to work as programmers. Often,
programmers consider themselves masters of the trade, and two masters often cause
conflicts.

Another problem with XP (like all AP) is its application in contract environments, and still
another problematicissue for XP is that all code is generally open for programming pairs
to review and alter. This can open up the team to integrity and security issues. As was
mentioned previously in this book, internal security is becoming a prime concern for IT
organizations, for internallgieveloped code and, particularly, for outsourced program-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

78 Brandon

ming. Further XP does not address downstream SDLC issues such as training and user
documentation.

XP requires the benefiting organization to take a very active role in the development
process, even to the extent that users are asked to write tests that will prove that
requested functions work properly before they are coded (e.g., customers may write
needed scenarios or features—one scenario per card—on index cards. Using index cards
is far cheaper and faster than writing, editing, and reviewing a large formal requirements
document.). Then, the developers estimate the time needed to build that feature, and,
based on the estimates, the customer prioritizes the features. Next, the customer writes
the test, and the developers write code that will successfully pass the test. Testing is
normally automated, and test harnesses organize test scripts that related to particular
functional areas. However, because testingis limited to “acceptance” type testing, full
multilevel testing is seldom performed. This may lead to problems with unanticipated
inputs, scalability problems, and security problems. This is discussed further in
Chapter X.

Because XP requires constant communication between the benefiting and performing
organizations (as well as among the developers), and because communication time and
traffic increases in proportion to the square of the number of communicating parties, XP
is not suited to large teams (Beck, 1999, advises limiting project teams to no more than
12 developers, working in pairs). As with JAD and AP methods in general, a customer
may not be able to commit his or her resources to that much involvement.

Thus, XP has a number of specific advantages and a number of specific disadvantages.
This is a hot debate topic in the IT world. On the one hand it is thought of as a great
breakthrough, and on the other it is akin to “letting the inmates run the institution.” XP

is not for all IT organizations.

Cleanroom software development (CSD) as a prosassdeveloped by Harlan Mills

(Mills, 1996) and involves the application of formal specification to software design. CSD
can use any of the methodologies previously discussed, but the incremental approach
is most often used. Requirements are turned into formal (sometimes mathematical)
specifications (Prowell, 1999). These formal specifications are then turned into the final
code through a series of correctness—preserving transformations. “Cleanroom treats
software as a set of communicating state machines that separate behavior and implemen-
tation concerns” (Garbett, 2003).The code is statically checked viarigorous inspections,
then system testing is done using statistical techniques. The testing team must be in a
separate organization from the developing team. The Cleanroom Reference Model may
be obtained online at the Software Engineering Institute (www.sei.cmu.edu/publica-
tions/documents/). Research results indicated that CSD produces code with fewer
defects (less than 1 bug per KLOC) at no greater cost than traditional methods (4 to 50
bugs per KLOC; Linger, 1994 owever, CSD requires high-level experienced analysts

and programmers. For that reason, CSD is best applied to mission-critical and/or life-

critical types of systems that are built internally by expert programmers.

Component-based software engineering (CBSE) is a development philosophy that
utilizes existing software modules to build application systems. Any of the aforemen-
tioned methodologies may be utilized, but the requirements specification stage here may

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 79

be longer due to the preparation of procurement documentation. CBSE is a formalized
system of reuse at a high level, formalized in the sense of a business approach rather than
at the software architecture level. Later in this chapter, reuse is discussed in more detail
in regard to software architecture. CBSE is based on having a cadre of reusable modules
or programs and some framework for integrating these modules. “IS shops that institute
component-based software development reduce failure, embrace efficiency and augment
the bottom line” (Williamson, 1997). CBSE can be applied at several levels of granularity.
Atthe highestlevelis the COTS (Commercial Off-the-Shelf Software) approach, whereby
commercial programs are purchased and integrated through a data exchange mechanism.
Software acquisition is discussed in Chapter XII.

Web services is a recently evolving approach to CBSE using the Internet. Using this
approach, different services are provided by different vendors in real time on their
servers, generally ata per usage price. This new computing architecture is formally called
SOA, or service oriented Architectures (Hall, 2003). Web services are based upon modern
open standards; unfortunately some of these standards (SOAP, WSDL, UDDI, etc.) do
not have adequate security built into them yet. Web services architecture uses SOAP
(simple object access protocol) as a lightweight remote method invocation process.
Older. more complex protocols for distributed object services are Microsoft's DCOM
(distributed component object model), Java’s RMI (Remote Method Invocation), and
OMG’s CORBA (Common Object Request Broker Architecture); RMland CORBA are
more secure than SOAP. Central repositories (registries) catalog which services are
available and where. using the UDDI (Universal Description Discovery and Integration)
protocol. Providers list the usage specifications of their services via the WSDL (Web
Services Description Language) protocol. Web service applications can be created in a
number of languages. with most written in Java, PHP, or Visual Basic-Net. Some think that
the “service-oriented architecture” may become the core paradigm for software applica-
tions and integration (Eisenberg, 2004).

The advantages of the CBSE approach are speed of assembly and short-term cost. The
disadvantages are that no strategic advantage is derived from the resulting product
(nothing is proprietary, anyone can doit), compromise of requirements to meet capabili-
ties of available components, vendor dependencies, possible performance issues, and
security problems.

Object-Oriented Software

Object-oriented (OO) programmiigya key part of many of the methodologies previously
discussed, such as RUP, AP, XP, and CSD. Charles Darwin (1859) postulated that it was
not the biggest, smartest, or fastest species that would survive, but the most adaptable.
The same is true for application software. Applications must evolve, even before they
are completely developed, because the environment under which they operate (business,
regulatory, social, political, technical, etc.) changes during the time the software is
designed and implemented (see Figure 5.7). In addition, there is the ever-present
requirements creep, and even after the application is successfully deployed, there is a

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

80 Brandon

constant need for change. Conceptually, the concept of adaptable software is illustrated
in Figure 5.13 (as compared to Figure 5.7).

Object-oriented software systems are inherently more adaptable and maintainable than
traditional procedural software, and OO systems foster software reuse. “Object technol-
ogy promises a way to deliver cost-effective, high quality and flexible systems on time
to the customer” (McClure, 1996). In fact, out of all the aforementioned methodology
variations and development acceleration techniques, OO is the only technique proven
to be almost always effective in reducifogg-term software development costs.

Modern OO design methods and programming languages are based on the concept of
a class, which is a type of thing. Once a class is defined, it serves as a mold for making
specific objects (instances) of that type. We could, for example, design a class for a
student which would indicate the data properties (attributes) and functionality (meth-
ods) that is attributable to each specific student object. Thisis illustrated in Figure 5.14.
Here we have defined a Rectangle class that has two properties: length and width, and

Figure 5.13. Software adapting to problem changes

Adaptive Software

Business
Problem

Business
Problem

Business
Problem

Business
Problem

. Start of End of ‘
., Project Project

v

Requirements Development

Figure 5.14. Class instances (objects)

Rectangle Class

Area()
Perimeter()

Rectangle 1 Rectangle N
---------- LN T
Length =a Length =c¢
Width =b Width =d

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 81

also two methods: Area and Rectangle. Every instance of a Rectangle (each object) will
have specific values for length and width.

OO classes have a property called encapsulation, which is a way to protect the properties
from unauthorized access from other code (functions) in a software system. This is
illustrated in Figure 5.15, in which the width and length data is protected. To find the value
for one of an object’s properties, a “get” method must be used, and to change the value
of an object’s properties, a set method must be used. These methods can be coded with
whatever access protection is necessary.

Figure 5.16 uses an UML (unified modeling language) diagram to show the main
relationships involved in OO analysis, design, and programming. As well as the
classification relationship (an object is classified as being an instance of a class), there
are composition and inheritance relationships. An object can be composed (physically
or logically) of other objects, and this composition is also a part of the class definition.

Figure 5.17 illustrates the inheritance relationship. Here we have introduced another
class, Positioned Rectangle, which inherits from (is derived from) the Rectangle class.
The Rectangle is called the base or super class, and the Positioned Rectangle is called
the derived or subclass. A derived class has the same properties and methods as were
defined in the base class, but more properties and methods can be included. In this
example, the Positioned Rectangle adds two more properties and one more method.

Polymorphism is another property of OO systems, wherein a derived class can alter the
behavior (code inside) of a method of the base class with the same name (signature: name
and arguments). For some OO languages, the actual mechanisms involve more complex

Figure 5.15. Encapsulation

getWidth() getLength()

setWidth() setLength()

Figure 5.16. Object-oriented relationships

<isa <is
supertype composed
of . . of
Class classif?es > Obiect :
<isa 1.* <is aninstance , <is part of
subtype of of

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

82 Brandon

Figure 5.17. Class-based inheritance

Rectangle Class
Length
Width
Area()

Perimeter()

I

Positioned Rectangle Class
X
Y
Move()
Positioned Rectangle 1 Positioned Rectangle N
Length =a _— Length =c¢
Width = b Width =d
X=w X=y
Y=x Y=z
Figure 5.18. Polymorphism
Employee
SkillLevel()
Progammer Tt
KLOC_Month WpM N
Bugs_KLOC Errors_Page Incldin_ts___Year
SkillLevel() SkillLevel() SkillLevel)

notions, such as virtual functions and/or late/early binding. This is illustrated in Figure
5.18, in which the skill-level function (e.g., which might return the skill level as an integer)
has a different meaning in each of the three subclasses of Employee. The code in the skill-
level function would be different in each of the three sub classes and presumably use the
properties which could also be different in each subclass.

As an example of the power of OO systems in contrast to non-OO systems, consider the
code for a payroll system. In this system, there are three types of employees: salaried,
hourly, and commission based. So we would have three subclasses of Employee, each
with its own version of the Pay function. This is illustrated in Figure 5.19.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 83

Figure 5.19. Subtypes of employees

Employee
Pay()
Salaried Hourly Commission
Pay() Pay() Pay()

To perform the payroll operation in an OO system, we would walk through our database
or data structure of employees and invoke the Pay function in each instance. In a non-
OO0 system, we cannot use the same function name with different code therein, so in such
a traditional non-OO language, we would have to use conditional code such as if, go-to,
or switch/case constructs. We would need to say something like, If the employee were
salaried, then invoke the salary-pay function. If the employee were hourly, then invoke
the hourly-pay function. If the employee were commissioned, then invoke the comm-pay
function. This may not seem important, but consider the evolution and maintenance
problems.

Payroll may be just one of the operations in a huge human resources system of hundreds
of thousand of lines of code. Many of the operations therein have conditional code,
because the nature of the operation is different depending upon the type of employee.
That particular conditional code is implemented within the operations, and conditional
code is spread throughout the system. To make a change to the logic, you must first find
all the conditional constructs that need to be changed. In an OO system, we just change
the method in question in each class.

Now suppose we need to add another type of employee, one thatis a piece-work laborer.
With a non-OO0 system, we would have to go to possibly every conditional construct and
add another case. Of course, we first have to find each one. With an OO system, all we
have to do is add another class. OO systems are also safely modifiable, because when
we add that additional class we are not involved with the other code in the system. In
the non-OO0 systems, we have to examine and possibly modify much of the code in the
system, and chances are (40%) that we are going to create a problem elsewhere while
trying to solve the original problem.

SIMULA was the first object-oriented language (SIMULA | was developed in 1962-1965,
and SIMULA 67 was developed in 1967). It was based somewhat on the ALGOL 60
programming language, and it introduced most of the key modern concepts of object-
oriented programming, including objects, classes, subclasses, and inheritance. SIMULA
was developed at the Norwegian Computing Center by Ole-Johan Dahl and Kristen
Nygaard, and it quickly got a reputation as a simulation programming language. Later,
it was found to possess interesting properties as a general programming language when

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

84 Brandon

the inheritance mechanism was used. In 1968, Edsger Dijkstra wrote his famous letter
titted GO TO Statement Considered Harmful, and this letter was perhaps the first stone
cast in the battle against spaghetti code. SIMULA compilers were developed for
UNIVAC, IBM, Control Data, Burroughs, DEC and other computers throughout the
1970s.

SIMULA is still used around the world, but its main impact was the introduction of the
modern OO programming principles. Alan Kay in 1970 was the person to coin the terms
object oriented andobject-oriented programming. His group at Xerox PARC (Palo Alto
Research Group) used SIMULA as a platform for their development of Smalltalk (initially
developed around 1973), extending object-oriented programming by the integration of
graphical user interfaces and interactive program execution. In 1975, Marvin Minsky
introduced frames in artificial intelligence (Al) programming, which were an ancestor to
modern objects implemented later in languages such as C++. Brian W. Kernighan and
Dennis M. Ritchie publishe@he C Programming Language in 1978, after years of
development. Although not object-oriented itself, C heavily influenced and formed the
basic syntax and structure of most modern OO programming languages, such as C++,
Java, C#, and PHP.

Inthe 1980s, at Bell Labs, Bjarne Stroustrup started his development of C++ (originally
called “C with classes”) by bringing the key concepts of SIMULA into the C programming
language. In the 1980s, considerable resources were invested in the ADA language by
the U.S. Department of Defense and in PROLOG via the Japanese Fifth Generation
Computer Project. ADA had some basic OO capabilities and extended the Pascal
language with strong typing, which reduced the occurrence of many types of program-
ming errors. Many computer experts initially believed that ADA, PROLOG, and Smalltalk
(with its Xerox and IBM backing) would fight for dominance in the 1990s, but as object-
oriented programming became the dominant style for implementing complex programs
with large numbers of interacting components (such as in GUI class libraries), more
capable and flexible languages as C++ raced to the forefront. In 1989 the Object
Management Group (OMG) was founded. Itis committed to developing vendor indepen-
dent OO specifications for the software industry.

In 1991 Sun Microsystems developed the Java programming language as part of a
research project to create software for consumer electronic devices like TVs and VCRs.

It contains many object-oriented programming features similar to C++ and was extended

to easily handle Web and multimedia type of applications. In 1994, Rasmus Lerdorf
created the initial version of Hypertext Preprocessor (PHP), an open-source Web server
scripting language with object-oriented capabilities similar to C++ and Java. A number

of other OO languages have some adopters (i.e., Eiffel, CLOS, SELF), however, with the
current push to rewrite and convert applications to a Web-centric environment, even C++

is being replaced by more web enabled and standards embracing languages such as Java
and PHP.

Because one uses a modern object-oriented language (i.e., C++, Java, or PHP) does not
necessarily mean that one has written an object-oriented program. One can still build
poor, non—object-oriented and nonreusable software with a fully object-oriented lan-
guage.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 85

Software Reuse

Today’s software development is characterized by many disturbing but well-docu-
mented facts:

. The supply of qualified IT professionals is less than the demand

. The complexity of software is constantly increasing

. IT needs better-cheaper-faster software development methods

. Most software development projects fail (Standish Group, 2004; Williamson, 1997)

Granneman asked, “Why is this IT project so expensive?” (Granneman, 2004). His answer
was that software is designed without much regard for future changes, even easily
foreseeable changes. He suggested asking this question as part of the project design—
Will this software need programming changes if:

. Business conditions change?

. Business partners change?

. Economic conditions change?

. Vendor relationships change?

. Banking relationships change?

. Products or services are added, changed, or discontinued?
. Business activity increases or decreases dramatically?

. The timing of how quickly information is needed changes?

. The source or destination of information changes?

“Reuse [software] engineering is a process where a technology asset is designed and
developed following architectural principles, and with the intent of being reused in the
future” (Bean, 1999). “If programming has a Holy Grail, widespread code reuse is it with

a bullet. While IT has made and continues to make laudable progress in our reuse, we
never seem to make great strides in this area” (Grinzo, 1998). “The quest for that Holy Grail
has taken many developers over many years down unproductive paths” (Bowen, 1997).

Jones (1994) discussed the problem with the lack of reusability and itemized reusable
material and the percentage of companies investigating and using the same. This is
detailed in Figure 5.20. Although these numbers are somewhat outdated, the table
illustrates the kinds of IT artifacts that can be reused and the relative percentage
utilization of each. Jones also indicated that the amount of risk in a projectis in inverse
proportion to the amount of reuse. A root cause of the lack of reusability is that software
development has evolved as a “craft” rather than as an engineering or manufacturing.
The discipline of software engineering is an attempt to correct this historic evolution.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

86 Brandon

Figure 5.20. Reusable artifacts

Reusable Material
Architectures
Data

Designs

Code

Estimates

Human Interfaces

% Investigating
1
25
3
20
5
10

Plans
Requirements
User Documents
Test Cases

5
2
2
10 20

In his book, Jones (1994) itemized and discussed the risks from a lack of reusability in each
of the above areas, and he indicated root causes, costimpact, and methods of prevention
and control for each. Although outdated, many of the general principles stillapply. “The
bottom line is this: while it takes time for reuse to settle into an organization—and for an
organization to settle on reuse—you can add increasing value throughout the process”
(Barrett & Schmuller, 1999).

Radding defines several different types of reusable components in IT business systems
(Radding, 1998):

. GUI Widgets: Effective, but only provide modest payback

. Server-Side Components: Provide significant payback but require extensive up-
front design and aarchitectural foundation

. Infrastructure Components: Generic services for transactions, messaging, and
database ... require extensive design and complex programming

. High-Level Patterns: ldentify components with high reuse potential

. Packaged Applications: Only guaranteed reuse, however may not offer the exact
functionality required

For all of the above types of reusable components, except packaged applications, OO
programming is the most effective architectural and programming technique. Packaged
applications and COTS software were identified and discussed earlier in this chapter.

Reusing code has several key implementation areas: application evolution, multiple

implementations, standards, and new applications. The reuse of code from prior appli-

cations in new applications has received the most attention. Just as important, however,
is the reuse of code (and the technology embedded therein) within the same application.
As stated earlier, applications must evolve even before they are completely developed,
because the environment under which they operate (business, regulatory, social,
political, technical, etc.) changes during the time the software is designed and imple-

mented.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 87

Another key need for reusability within the same application is for multiple implemen-
tations, the most common of which involves customizations, internationalization, and
multiple platform support. For example, organizations whose software must be utilized
globally might need to present an interface in customers’ native languages and with a
socially acceptable look and feel (localization). The multiple platform dimension of reuse
today involves an architectural choice in delivery platforms (hardware and operating
system) on both the client and server sides.

Corporate software development standards concern maintaining standards in all parts
of an application and maintaining standards across all applications. For a computer
system to have lasting value it must exist compatibly with users and other systems in an
ever-changing information technology (IT) world (Brandon, 2002). Software reuse and
OO programming as it relates to standards are covered in more detail in a later chapter
of this book.

In most organizations, software reusability is a goal that is very elusive,“a most difficult
promise to deliver on” (Bahrami, 1999). Radding stated, “Code reuse seems to make sense,
but many companies find there is so much work involved, it's not worth the effort. ... In
reality, large scale software reuse is still more the exception than the rule” (Radding,
1998). Bean, in “Reuse 101,” stated that the current decreased “hype” surrounding code
reuse is likely due to three basic problems:

. Reuse is an easily misunderstood concept
. Identifying what can be reused is a confusing process
. Implementing reuse is seldom simple or easy to understand (Bean, 1999)

Grinzo (1998) also list several reasons and observations on the problem of reuse, other
than for some “difficult to implement but easy to plug-in cases,” such as GUI widgets;

a “nightmare of limitations and bizarre incompatibilities”; performance problems; “thorny
psychological issues” involving programmers’ personalities; market components that
are buggy and difficult to use; fear of entrapment; component size; absurd licensing
restrictions; or lack of source code availability.

Some organizations try to promote software reusability by simply publishing specifica-
tions on class libraries that have been built for other in house applications or that are
available via third parties, some dictate some type of reuse, and other organizations give
away some type of “bonus” for reusing the class libraries of others (Bahrami, 1999).

But more often than not, these approaches do not result in much success.

“It's becoming clear to some who work in this field that large-scale reuse of code
represents a major undertaking” (Radding, 1998). “An OO/reuse discipline entails more
than creating and using class libraries. It requivesializing the practice of reuse”
(McClure, 1996).

There are two key components f@malizing an effective software reuse practice
(Brandon, 2002):

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

88 Brandon

1. Defining a specific information technology architecture within which applications
would be developed and reuse would apply

2. Defining a very specific object-oriented “Reuse Foundation” that would be
implemented within the chosen IT architecture. Such a foundation is typically the
combination of an overall framework and specific reusable patterns.

“If you want reuse to succeed, you need to invest in the architecture first” (Radding,

1998). “Without an architecture, organizations will not be able to build or even to buy
consistently reusable components.” The major architectures today are Java Two
Enterprise edition (J2EE), Microsoft’s .Net, and open source LAMP (Linux, Apache,
MySQL, PHP). Object-oriented frameworks are available from a number of vendors for
each architecture, or an organization can create its own framework and patterns. Modern
architectures may support one or more application servers, programming languages and
IDEs (integrated development environments).

Application frameworks are a holistic set of specifications for the interaction and
assembly of multiple reusable patterns. A pattern is the design of a core functional
element such as the MVC (model-view-controller) pattern used for user interfaces. The
boundary between architecture, framework, pattern, and programming language is blurry
and not the same in different architectures. Examples of modern proprietary application
frameworks include IBM’s Websphere, Macromedia’s ColdFusion and Flex, Sun’s |-
Planet, and BEA’'s Weblogic.

These reuse foundations (frameworks and patterns) are based on the key object-oriented
principles of inheritance and composition. By establishing foundations like these, an
organization can effectively begin to obtain significant reusability since programmers
must inherit each of their classes from one of the established classes and they must only
compose their classes of the established pre-built compoungritgs been concluded

by several authors, “A reuse effort demands a solid conceptual foundation” (Barrett,

1999).

Software Engineering Institute

The Software Engineering Institute (SEI; www.sei.cmu.edu/cmm) is aresearch institute
funded by the U.S. Department of Defense (DoD), contracted to Carnegie Mellon
University, which was started in 1984. The SEl receives tens of millions of DoD dollars
on an annual basis. Their overall goal is to advance the practice of software engineering,
and they are perhaps best known for their formulation of software engineering “maturity
models.” These models, called capability maturity models (CMM), define best prac-
tices—key practices (things to be done and ways of doing things) that organizations at
different levels of software engineering “maturity” do.

A popular baseball analogy was first reportedly expressed by Watts Humphrey, known
as the Father of CMM:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 89

. Immature Team: When the ball is hit, some players run toward the ball and others
stand around and watch, perhaps not even thinking about the game.

. Mature Team: When the ball is hit, every player reacts in a predefined disciplined
manner. Depending upon the situation, the pitcher might cover home plate,
infielders might set up a double play, and outfielders might back up their teammates.

The SEI has formulated a number of CMM over the years, including,

. SW-CMM: CMM for Software Development

. SA-CMM: Software Acquisition CMM

. P-CMM: People CMM

. SE-CMM: Software Engineering CMM

. IPD-CMM: Integrated Product Development CMM

The Software Capability Maturity Model (CMM for Software) was the first, best known,
and probably used the most today. It defines five levels of software process maturity that
determine effectiveness in delivering quality software:

. Initial

. Repeatable
. Defined

. Managed

. Optimized

Itis primarily geared to large organizations and their contractors, however, many of the
processes involved are appropriate to any organization, and if reasonably applied can
be helpful. Organizations can receive CMM ratings by undergoing assessments by
qualified auditorsThese ratings are useful to an organization for two reasons. First the
assessment lets an organization know where it stands in terms of software engineering
maturity as viewed by an independent source, and secondly the assessment (if very

good) can be used by the organization in selling its services. A description of each level
follows:

. Level I (Anarchy): Atthis level, programmers generally do what they individually
think best. Chaos, periodic panics, and heroic efforts are often required by
individuals to successfully complete projects and successes is typically not
repeatable. Cost, schedule, and quality are unpredictable. There is little formal
planning or established programming practices. Overcommitmentis common, and
senior management does not understand application development/procurement.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

90

Brandon

Level 2 (Folklore): Here programmers have experience developing certain kinds
of applications. They have devised effective processes (policies and procedures
in regard to project management, requirements, and configuration), and generally
make time and cost estimates. Their strength depends upon doing the same kind
of application, but they cannot adapt well to new applications, new methods, or new
tools. Knowledge is only in heads of programmers.

Level 3 (Standards): Here the corporate “mythology” is written down in a set of
standards. These standard software development and maintenance processes are
integrated throughout the organization and some sort of a software engineering
process group is in place to oversee these processes. Groups may tailor the
standards with approval, however the process has not been measured (by collect-
ing data) or compared to other methods. Since itis not measured, programmers and
managers debate the effectiveness of the metrics that are used to track productiv-
ity, processes, and products.

Level 4 (Managed): Here project performance is predictable, and quality is
consistently high. Metrics have been established, and hard data is collected to
access process’s effectiveness. Measurements are used to improve the product
quality.

Level 5 (Optimized): Here the focus is on continuous process improvement. The
impact of new processes and technologies can be predicted and effectively
implemented when required. Tools are available to automate collection of data, and
measurements are used to improve the processes.

Each maturity level, except for the first, is broken down into key process areas. Each key
process is described in terms of key practices. The key process areas at each level are:

Level 2 Key Process Areas [Basic Project Management]
Requirements Management
Software project planning
Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

Level 3 Key Process Areas [Organizational Processes Standardization]
Organization process focus
Organization process definition
Training program
Integrated software management
Software product engineering
Intergroup coordination
Peer reviews

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 91

Level 4 Key Process Areas [Quantitative Process Analysis - Metrics]
Quantitative process management
Software quality management

Level 5 Key Process Areas [Continuous Improvement of Entire Process]
Defect prevention
Technology change management
Process change management

Note thatthe SEI CMM Level 2 key process areas encompass basic project management.
We will look more into these level two processes in later chapters of this book. For
convenience, the practices at all the levels are organized by common features, which
address the level of implementation; these common features are:

. Commitment to perform

. Ability to perform

. Activities performed

. Measurements and analysis
. Verifying implementation

Note that these common features are embedded into our model for IT project critical
success completion factors as described in Chapter II (in our model, verification
assumes measurement and analysis).

The SEl s currently revising the software SW-CMM into a more comprehensive CMMI
integrated model that will also encompass systems engineering and product develop-
ment. Higher CMM levels have correlated with less software defects and higher cost
savings (in terms of function points, which are discussed later in this book). Figure 5.21
shows these types of data, as publishe@dmputerworid (King, 2003).

During the last 5 years, about 1,000 organizations have been assessed, and 27% were
rated atLevel 1,39% at Level 2, 23% at Level 3, 6% at Level 4, and 5% at Level 5. Currently
there are about 70 companies worldwide that are at Level 5 (King, 2003).

However, being at Level 5 does not guarantee that a company’s internal implementation
of these standards is best in class (King, 2003). The CMM standards describe what must
be done, not how to do it. Remember also that “the CMM is a consensus among a
particular group of software engineering theorists and practitioners concerning a
collection of effective practices grouped according to a simple model of organizational
evolution. As such, it is potentially valuable for those companies that completely lack
software savvy, or for those who have a lot of it and want to avoid its pitfalls. At worse,
the CMM is a whitewash that obscures the true dynamics of software engineering,
suppressing alternative models” (Bach, 1994). A notable alternative model of software
maturity is that of Jones: “Software Productivity Research” (Jones, 1994).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

92 Brandon

Figure 5.21. CMM levels and improvements

CMM Level Defects per % Improvement
Function (from lower level)
Point

1 0.750 ---

2 0.620 17.33

3 0.475 23.34

4 0.228 52.00

5 0.100 56.00

Institute of Electrical and
Electronics Engineers

The Institute of Electrical and Electronics Engineers (IEEE) is one of the world’s largest
professional organizations with over 350,000 members in over 150 countries. About one
half of the IEEE members are outside of the United States, and that portion is growing
more rapidly than the U.S. membership. IEEE publishes about one quarter of the world’s
literature within the technical fields it encompasses. The IEEE Computer Society is the
largest of the 36 technical societies in IEEE, with over 100,000 members. The IEEE
Computer Society is in the final stages of completing and approving a Software
Engineering Body of Knowledge (SWEBOK). The knowledge areas to be covered
include:

. Professional engineering economics

. Software requirements

. Software design

. Software construction and implementation
. Software testing

. Software maintenance

. Software configuration management

. Software engineering management

. Software engineering process

. Software engineering tools and methods
. Software quality

Most of the SWEBOK has already been documented within the various IEEE software
standards, and many of these standards are discussed later in this book. These IEEE
software standards include:

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 93

730-2002 IEEE Standard for Software Quality Assurance Plans

828-1998 IEEE Standard for Software Configuration Management Plans
829-1998 IEEE Standard for Software Test Documentation

830-1998 IEEE Recommended Practice for Software Requirements Specifications
982.1-1988 IEEE Standard Dictionary of Measures to Produce Reliable Software
1008-1987 IEEE Standard for Software Unit Testing

1012-1998 IEEE Standard for Software Verification and Validation

1016-1998 IEEE Recommended Practice for Software Design Descriptions
1028-1997 (R2002) IEEE Standard for Software Reviews

1044-1993 (R2002) IEEE Standard Classification for Anomalies

1045-1992, (R2002) IEEE Standard for Software Productivity Metrics

1058-1998 IEEE Standard for Software Project Management Plans

1058.1-1987 (R1993) IEEE Standard for Software Project Management Plans
1061-1998 (R2004) IEEE Standard for Software Quality Metrics Methodology

1062, 1998 Edition (R2002) IEEE Recommended Practice for Software Acquisition
(includes IEEE 1062a)

1063-2001 IEEE Standard for Software User Documentation

1074-1997 IEEE Standard for Developing Software Life Cycle Processes
1175.1-2002 IEEE Guide for CASE Tool Interconnections-Classification and De-
scription

1219-1998 |IEEE Standard for Software Maintenance

1220-1998 IEEE Standard for the Application and Management of the Systems
Engineering Process

1228-1994 (2002) IEEE Standard for Software Safety Plans

1233, 1998 Edition (R2002) IEEE Guide for Developing System Requirements
Specifications (including IEEE 1233a)

1320.1-1998 (R2004) IEEE Standard for Functional Modeling Language - Syntax and
Semantics for IDEFO

1320.2-1998 (R2004) IEEE Standard for Conceptual Modeling Language Syntax and
Semantics for IDEF1X97 (IDEF object)

1420.1-1995 (R2002) IEEE Standard for Information Technology—Software Re-
use—Data Model for Reuse Library Interoperability: Basic Interoperability Data
Model (BIDM)

1420.1a-1996 (R2002) IEEE Supplementto Standard for Information Technology—
Software Reuse—Data Model for Reuse Library Interoperability: Asset Certifica-
tion Framework

1420.1b-1999 (R2002) IEEE Supplement to IEEE Standard for Information Technol-
ogy—Software Reuse—Data Model for Reuse Library Interoperability: Intellec-
tual Property Rights Framework

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

94 Brandon

. 1462-1998 [Adoption of International Standard ISO/IEC 14102:1995(E)], Informa-
tion technology — Guideline for the evaluation and selection of CASE tools

. 1465-1998 [Adoption of ISO/IEC 12119: 1994(E)], IEEE Standard Adoption of
International Standard ISO/IEC 12119: 1994(E) Information Technology—Software
Packages: Quality requirements and testing

. 1490-2003 IEEE Guide (©IEEE) — Adoption of PMI Standard—A Guide to the
Project Management Body of Knowledge (©PMI)

. 1517-1999 (R2004) IEEE Standard for Information Technology—Software Life
Cycle Processes—Reuse Processes

. 2001-2002 IEEE Recommended Practice for the Internet—Web Site Engineering,
Web Site Management, and Web Site Life Cycle

. 1540-2001 IEEE Standard for Software Life Cycle Processes-Risk Management

. 12207.0-1996 IEEE/EIA Standard: Industry Implementation of International Stan-

dard ISO/IEC 12207:1995 Standard for Information Technology—Software Life
Cycle Processes

. 12207.1-1997 IEEE/EIA Standard: Industry Implementation of International Stan-
dard ISO/IEC 12207:1995 Standard for Information Technology—Software Life
Cycle Processes—Life Cycle Data

. 12207.2-1997 IEEE/EIA Standard: Industry Implementation of International Stan-
dard ISO/IEC 12207:1995 Standard for Information Technology— Software Life
Cycle Processes—Implementation considerations

Other Software
Standards Organizations

There are about 50 other organizations worldwide that produce software engineering
standards. Some of these are the International Organization for Standardization (IO0S),
the American National Standards Institute (ANSI), World Wide Web Consortium (W3C)
for Internet-related standards, NIST which is an agency of the U.S. Commerce
Department’s Technology Office, space agencies such as NASA and military organiza-
tions such as the U.S. Department of Defense (DoD). The American National Standards
Institute (ANSI) is a private, nonprofit organization that is the focal point for the U.S.
voluntary consensus standards system. ANSI consists of approximately 1,300 national
and international companies as well as many government agencies, institutional mem-
bers, professional, technical, and trade organizations. ANSI facilitates a consensus
amongst its members to foster ANSI accredited standards. A key part of the approval
process is the fact that all members have the opportunity to participate in the standards
development process.

However, the most dominant of these other organizations worldwide is ISO/IEC, the
software engineering subcommittee of the International Organization for Standardiza-

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 95

tion. The International Organization for Standardization (ISO, from the Gregk
meaning equal) has set international standards (about 14,000 of them) in many areas for
many years, including software engineering standards. ISO has over 180 technical
committees, covering many industry sectors and products. The American Society for
Quality Control (ASQC) handles the U.S. Technical Advisory Group (TAG), which offers
its opinions to the overall ISO technical committees. Many ISO standards are shared
(“adopted”) by IEEE, and are so noted in the above list of IEEE standards. The ISO/IEC
12207 standard provides a total framework for the acquisition, supply, development,
operation, and maintenance of software. In addition, the standard provides a methodol-
ogy for managing software life cycle activities and areference point for new and emerging
engineering standards. ISO/IEC 12207 has been adopted/adapted by ANSI, IEEE, EIA,
and DoD in the United States.

The European Software Institute is a major industry initiative, founded by leading
European companies, to improve the competitiveness of the European Software Indus-
try. To this end ESI promotes good software engineering and management practice. Since
1993, the Software Process Improvement and Capability determination (SPICE) project,
launched within 1ISO, has been developing a framework standard for software process
assessment. ESI, is akey partnerin SPICE, and is taking the leading role in the European
adaptation of SPICE.

Chapter Summary

Earlierin this book, the three challenges to software engineering intlee2Lirry were
outlined (Sommerville, 2003):

. The Heterogeneity Challenge: Flexibility to operate on and integrate with multiple
hardware and software platforms from legacy mainframe environments to the
landscape of the global web

. The Delivery Challenge: Ability to develop and integrate IT systems rapidly in
response to rapidly changing and evolving global business needs

. The Trust Challenge: Being able to create vital (mission and/or life critical)
software that is trustworthy in terms of both security and quality

These challenges can be met by a careful integration of modern project management and
software engineering principles and practices. This was illustrated in Figure 1.4 in
Chapter I, and this chapter has discussed software engineering maturity, methodologies,
and OO architecture. In Chapter VI, project scope, phasing, and requirements are
discussed; later chapters of this book will further detail these other principles and
practices. Throughout the book, critical IT project success factors are used as the basis
for key project management processes as performance, risk, and quality control.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

96 Brandon

References

Bach, J. (1994, September). The immaturity of CMMerican Programmer.
Bahrami, A. (1999)0bject oriented systems development. New York: McGraw Hill-Irwin.

Barrett, K., & Schmuller, J. (1999, October). Building an infrastructure of real-world reuse.
Component Strategies.

Bean, J. (1999, October). Reuse 1Biserprise Development.

Beck, K. (1999)Extreme programming explained: Embrace change. Boston: Addison-
Wesley Professional.

Bauer, F. (1972). Software engineerihgormation Processing, 71.

Bowen, B. (n.d.). Software reuse with Java technology: Finding the Holy Grail. Retrieved
from www.javasoft.com/features/1997/may/reuse.html

Brandon, D. (2002). Achieving effective software reuse for business systefnacdss-
ful software reengineering. Hershey, PA: Idea Group Publishing.

Cockburn, A. (2001)dgile software development. Boston: Addison-Wesley.

Darwin, C. (1859)The origin of species by means of natural selection (or the preserva-
tion of favoured races in the struggle for life).

Dennis, A. (1999, Spring). Business process modeling with group support systems.
Journal of Management Information Systems, 115-142.

Eisenberg, R. (2004, April 17). Service-oriented architecture: The future ignveii-
gent Enterprise.

Garbett, S. (2003, August). Cleanroom software engineebndobb’s Journal.
Granneman, M. (2004). Why is this IT Project so expensieputerworld, June 4.

Grinzo, L. (1998, September). The unbearable lightness of being reuBahlmbbs
Journal.

Hall, M. (2003, May 19). The Web services tsunafmputerworld.
Highsmith, J. (20004 daptive software development. New York: Dorset House.

Jacobson, I. (1999The unified software development process. Boston, MA: Addison-
Wesley Professional.

Jones, C. (1994 Mssessment and control of software risks. Englewood Cliffs, NJ:
Yourdon Press Computing Series.

King, J. (2003, December 8). The pros and cons of Cdmputerworld.

Kruchten, P. (1998)The rational unified process. Boston: Addison-Wesley.
Linger, R. (1994). Cleanroom process modEEE Software, 11(2).

McClure, C. (1996). Experiences from the OO playing figldended Intelligence.
Mills, H. (1996).Cleanroom software engineering. Oxford, UK: Blackwell Publishers.

Palmer, S., & Felsing, J. (2002)practical guide to feature-driven development. New
York: Prentice Hall.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

The Software Engineering Discipline 97

Prowell, S. (1999)Cleanroom software engineering: Technology and process. Boston:
Addison-Wesley.

Radding, A. (1998, November 9). Hidden cost of code rdugemation Week.

Royce, W. (1970). Managing the development of large software syskeoesedings
IEEE WESTCON, IEEE Computer Society, Los Angeles, CA.

Schwaber, K., & Beedle, M. (2001 gile software development with Schrum. Upper
Saddle River, NJ: Prentice Hall.

Sommerville, 1. (2003)Software engineering. Boston: Pearson Addison Wesley.
Standish Group. (20048 haos chronicles. Retrieved from www.standisgroup.com

Stapleton, J. (1997DSDM dynamic systems development method. Boston: Addison-
Wesley.

Williams, L., & Kessler, R. (2000). Strengthening the case for pair programnfifg.
Software, 17(4), 19-25.

Williamson, M. (1997, May). Software reus&lO Magazine.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TEAM LinG

